Nano-Particles and Targeted Delivery using Ultrasound

Kenneth L Watkin PhD

University of Illinois at Urbana-Champaign

Beckman Institute for Advanced Science and Technology Advanced Chemical Systems Molecular and Electronic Nanostructures

College of Applied Life Studies

University of Illinois College of Medicine

Founder Ultra Imaging LLC

Disclosure:

Ultra Imaging LLC

University of Illinois at Urbana-Champaign

- Office of Technology Management
- Beckman Institute for Advance Science and Technology
- Center for NanoScale Technology

Aloka Company, Ltd.

BioCrystal Ltd.

Outline

- Current Development
- II. Contrast Agents Nano Particles
 - a) Gadolinium Oxide Microspheres
 - b) Lipid Based Drug Delivery Nanoparticles
 - c) Silica Nanoparticles

Current Development

• Imaging Machinery [US5,908,388; US5,485,841]

-Small Ultrasonic Device for Imaging & Drug Delivery using Ultrasound Sensitive Nanoparticles

Current Development

- Gadolinium Oxide Microspheres
- Lipid Based Nanoparticles
- Silica Nanoparticles

Current Development

- Contrast Agents
 - Multi Modal
 - CT MR US PET SPECT
 - US6797257
 - Microsphere with embedded particulates (GdO, MnO ...)
 - Neutron Capture Therapy
 - » High Neutron Capture Cross Section
 - Tumor targeted radiation therapy gliomas
 - Dextranized Gadolinium Oxide
 - » 7nm

Controlled Release Nano Particles (CR-NPs)

- Controlled Release Nanoparticles (CR-NPs)
 - Patent pending
 - Controlled release using ultrasound
 - Differential release
 - Targeting
 - » IGF-R1
 - » Mucin 1
 - » Annexin V
 - » VCAM -1
 - Loading
 - » Urokinase
 - » Docetaxel

Loading Phase

Encapsulation of Drugs into Nano-Particles

- Size: 30 nm - 200 nm

- Encapsulation Range: 35 95%
 - Dependent upon formulation

Loading Characteristics

Targeted Drug Delivery Method

Targeted Drug Delivery Technology

• Point and Shoot Method

Inject

 entrapped cancer drugs in small micro or nano carriers functionalized with cancer seeking antibodies

– Image

 the targeted cancer cells/tumor with ultrasound

- Release

 the encapsulated drug using the ultrasound imaging system

Targeted micro/nano carriers

Point

Point + Injection

Point

Point

Point + Attached

Shoot

Targeting

Mini Opticell

Targeting

Light Microscope Image

Fluorescence Microscope Image

Floating cells

Cancer cells adhering to Opticell membrane

Nanoparticles with IGF-R1 targeting

Targeting

cells

Opticell membrane

Regional Enlargement 1

Load Releasing Characteristics

Ultrasound Release using Carboxyfluorescein

BEFORE Insonation

AFTERInsonation

Watkin, 2003

Percent Release @ 7.5MHz Linear Array

Watkin & Gosangari, Controlled Release Society, Miami, FL, June 2005

In Vitro Testing

In Vitro Test Cell Lines

- HT 29 Colon cancer
- HCT- 116 Colon Cancer
- MCF-7 Breast Cancer
- SCC-9 Squamous Cell

In Vitro Tests

In Vitro Tests of Insonation Strategy using Ultrasound

- Requirements
 - Precise positioning of Mini Opticell in the prescribed regions of the ultrasound probe focal zone(s)
 - 2. Complete insonation of all the cells within the Mini Opticell

SOLUTION = SLOWLY ROTATE THE MINI OPTICELL IN THE ULTRASOUND FOCAL ZONE

Mini Opticell Bracket Basic Design

In Vitro Tests HT 29

A Single Dose Test

В

In Vitro Tests

A Single Dose Test

В

Taxotere

Adriamycin

Silica Nanoparticle (SiO-NP)

- Choi, Watkin, Kim
- SiO₂
- 20 nm 200nm
- Doped
 Gd DTPA
 CF

Silica Nanoparticles (SiO-NP)

14 T MR images (SiO-NP)

Contrast intensity

Tr=0.1sec

Tr=0.5sec

Low concentration samples

High concentration samples

ASTM, NCI - NCL, NIST and FDA Joint Workshop

Ultrasound (SiO-NP)

Silica Nanoparticles

- Characteristics
 - ? Toxicity
 - ? Biodistribution
 - ? Pharmacokinetics
 - Current Study Pathway
 - Biodistribution
 - LD₅₀

Summary

- Controlled release nanoparticles
 - Watkin & Gosangari, Controlled Release Society, Miami, FL, June 2005
- Functionalized CR-NPs
 - Individualizeable

- Small Ultrasonic Imaging System for use with CR-NPs
 - "point and shoot"
- Loadable -- drugs ...
 - Multiple i.e. Taxotere & Doxorubicin